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SUMMARY

The stability of the perturbed longitudinal motion of an unaugmented air-
craft about a given trimmed flight condition is determined by the well-known
stability quartic. It is shown that two basic relationships exist between the
coefficients of the quartic and those of a quadratic factor. These relationships
are linear in the coefficients of the quartic and the latter are in turn linear
functions of the more important stability parameters. It is possible, therefore,
to use the relationships, already mentioned, to derive a further equation
connecting the two coefficients of the quadratic factor as a single stability
parameter is varied, all others being held constant.

Examination of the position of the locus traced out by the point defined by
the coefficients of the quadratic in relation to the axes and the parabolic
boundary (separating real and complex roots) enables the trends in the nature of
and the degree of stability of the mode or modes represented by the quadratic
factor to be determined. Expressions are given which enable the value of the
parameter being varied, and associated with a given point of the locus, to be
calculated.

The use of this (as far as is known, novel) method of analysing aircraft
stability is illustrated by a number of examples.
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I
I INTRODUCTION

It is about a century ago since Routh 1,2 formulated his weil-known

necessary and sufficient conditions for the stability of a system as a set of

inequalities to be satisfied by the coefficients of the characteristic or

stability equation of the system. Since the earliest days of aviation use has

been made of Routh's test functions (or their equivalents as given by Hurwitz3

4,5
and independently by Frazer )to ascertain the stability or otherwise of a

given equilibrium motion of aeroplanes. However Routh's discriminant is a com-

plicated expression even for the quartic stability equation, which results from

the analysis of the simple case of the linearized motion of an aeroplane with

motivators (control surfaces) fixed. It is not surprising, therefore, that

attempts have been made to draw conclusions about trends in an aeroplane's

stability on the basis of a less complete knowledge of the coefficients of the

characteristic equation. Gates,through a series of papers culminating in the

well-known generalized theory of stability and control analysis 6(written

jointly with Miss H.M. Lyon) investigated the special significance of the

constant term and the coefficient of X 2 of the longitudinal stability quartic,

their relationship to the static and manoeuvre margins and the implications of

changes in sign of these margins for the stability of the longitudinal modes of

motion of an aeroplane.

Algebraic criteria such as those given by Routh and Hurwitz often lead tot conditions the interpretation of which is difficult. To overcome this

difficulty and to extract the utmost generality from specific calculations of

the roots of the stability, the alternative approach of displaying in graphical

form the dependence of the stability on the values of system parameters was

adopted. In the case of a single system parameter, the variation of the roots

of the stability equation can be presented in the form of a one-parameter

stability diagram or a root-locus diagram.

No doubt one of the factors contributing to the pursuit of simplified

criteria and studies of general trends was the tedium then attending the deter-

mination of the roots of the characteristic equation. An alternative approach

was to seek approximate solutions7 for the roots of the characteristic equation.

Nowadays, the relative ease with which the roots can be extracted using even

the small, readily available, desk computers could be taken to indicate that

Ln studies of general trends and simplified criteria become less important. The

validity of this argument is questionable and adoption of that viewpoint could
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result in decreased insight into the nature of the basic aeroplane stability.

Previously acquired knowledge could become forgotten or at best ill-remembered.

Force is lent to this counter argument by the recent appearance of papers which

sought to discuss the question of when static stability is a sufficient, as well

as a necessary, condition for dynamic stability. The first of these by Sachs8

investigated the matter using two-parameter stability boundaries and root-locus

plots for specific aeroplanes. More recently Babister suggested that the use
of the approximate factorization of the longitudinal stability quartic, due to
Bairstow, afforded greater insight into the matter. He was careful, however, to

remark that the conclusions can only be relied upon when the degree of approxi-

mation is good.

The quartic equation can be written as,

K A4 + K3A3 + K2A2 + KA + K 0
4 3 2 1 0

or
2 2

K4 (X + gX + h)(
2 + GA + H) =0

where the two factors always exist and have real coefficients. Previous

experience of the relationships between the coefficients of the original quartic

(K4, K3, K2, KI and K O) and those of the two quadratic factors (g, h, G and H)

suggested to the present author that g(G) is related to h(H) when one para-

meter of the system is varied all others being held constant. The present

analysis derives such relationships and demonstrates that they are relatively

simple in form. The existence of these relationships enables diagrams to be con-

structed from which conclusions may be drawn concerning the variation in the

nature and stability of the individual modes as a particular system parameter

changes.

Although differing from the one-parameter stability diagram and the exact

form of the root-locus plot in that it does not require the roots of the quartic

to be determined, the present method provides all the data necessary to construct

either of the other two diagrams, but to do so requires the solution of the

two quadratics.

2 RELATIONSHIP OF THE COEFFICIENT OF THE QUADRATIC FACTORS TO THOSE OF THE
QUARTIC

In the main text the notation of R&M 3562 is adopted, but for ease of

comparison with Babister's analysis and the results of other references67
6a

the analysis is repeated in Appendix A in terms of the Neumark-type n 6tation

I ifliT - " I notatlion
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The stability of the small perturbation longitudinal motion of an aircraft,

with controls fixed, from a trimmed rectilinear flight condition in a constant

density atmosphere is governed by the quartic
10

K4X4 + K3X3 + K2X2 + KIX + K 0 0 (1)

where 34  - 4Qm4 ,

K3  Qm3 + mqQm4 + m7Wm3,
K2 Qm2 + lqQm 3 + mWm2 + fwWm3 + muUm3
KI amqQm2 + %I6 + 'w m2 + muUm 2

K0  =mwWM + m! ,

and QM4 1 + z* - I,

Q-3 xu + zw + (Xuz* - Zux) Xu + zw'

QM2 XZw - ZuXw

WM3  ue - zq f ue ,

We2  Uexu + wezu + (zuXq -xuzq) - 92 UeXu + WeZu

WeI  glzu - g2xu ,

Um3  - Xq - we + (zqx* -Zjxq) -uex- wez* -we

Um2  - (XwZq - ZwXq) - g1(0 + z*) - g2x. - uex w - WeZu 9-g1 -UeXw-WeZu,

Uml '- glZw + g2xw•

The characteristic equation as given applies to any body system of axes, but it

is possible to simplify the expressions, without any essential loss of

generality, by adopting aerodynamic body axes (so-called stability axes) and

restricting our attention to a level flight equilibrium condition. In this case

the following relationships apply,

ue  a I , we, g1  = g and g2 = 0

It is convenient to conduct the analysis in terms of dynamic normalized equiva-

lents of the physical quantities. The previous expressions for the W's and the

U's reduce to

U m 3 U m 3 O

W U x ; U = 0 ;
2 m

i- u m vZw
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so that the coefficients of tne quartic may be written as

K -
4

K3  n Qm + m + m.q w

K - 0 mrnQM + M*W + m
2 Qm2 q 3 w m2  w

K I- mqQ + mW + mW + mU
I --2  w 1  wim 2  u m2

K0 M m Wml + muUm

As remarked in the Introduction the quartic can always be factorized into two

quadratic factors. Thus,

34 + + + KIA + K0 (X2 + gX + h)(AX + G? + H) - 0 (2)

An advantage of the two quadratic factors lies in the simpler statement for the

necessary and sufficient conditions for stability in terms of g, h, G and H

rather than in terms of K3, K2, K1  and K0 . For the former the conditions

are:

g > 0, h > 0; G > 0, H > 0

whilst in terms of the coefficients of the original quartic the necessary and

sufficient conditions for stability are

K3  > 0, KI > 0 , 0  > 0 and R > 0
3 1 K0 K

where R (the Routh discriminant) is K3K2K - K K

An essential step in the analysis in terms of g, h or G, H is the

relationship between these and the coefficients K31 K2, K1  and K0 *

Expansion of the product of the two quadratic factor yields the following

G + g - K3

H+h+gG - K2

Hg + Gh - K1 .1
I0

Hh - K0 0"o
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Since subsequently we shall regard m w and m u as parameters which may be

varied, whilst other quantities involved in K3, K2, K, and K0  are held

constant, the coefficients are rewritten as

K2 k 2 + Mw

KI = k + m W + MuU
I win2  urn2

K = W + mo U
0 W m I ur 1I

Manipulation of the above relationships between the two sets of coefficients

yields the following equations,

2
K2g - KI + K3h = 2gh + g (K3 - g)

1 (4)

K2h - K0 = gh(K 3 - g) + h

An identical pair of equations relate G and H by virtue of the symmetry of

the basic equations.

To obtain the Bairstow approximations used by Babister9 the assumption is

made that g and h , which may be identified with the phugoid motion, are

small so that to this degree of approximation,

K0

Kh-K = 0 or h =
2 0 K2

and
(K 2 K I - K 3KO0)

K 2 g- K l + K3h = 0 or g (K 2
K2

Furthermore since g and h are small,

G K3 -g K3

and

H = K2 -h -gG K2

These various approximations may be improved upon by an iterative solution. How-

ever our objective is not to obtain approximate values of g and h or the

roots associated with this factor, but to examine the manner in which g and h
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are related when a single parameter (for example mu ) is varied. We accordingly
U

return to equations (4).

3 RELATIONSHIP OF g(G) TO h(H) WHEN m IS VARIEDU

Introduction of the expressions for K and K0  into equations (4)

yields the following pair of equations,

Um2mu  = K2 g + K3 h - k - W m2(K 2 - k2 ) - 2gh - g2(K 3 -g)
ID 2  2 1 (5)

U mm u  = K h - W (K - k gh(K - g) - h2
mu 2 m 2 2 g 3 g

These two equations imply that as m is varied the associated values of gu

and h satisfy the relationship,

U k + W2(K2 - k2) -K 3 h -K 2 g + 2gh + g
2 (K3 - g)

k U2 2 (6)
Um1  W M(K 2 - k) - K2h + gh(K3 - g) + h

2

This exact relationship between g and h can be rearranged as a quadratic for

h in terms g , thus,

a2h 2 + a h + a0 0 (7)

where a 2 = k

aI = - kg2 + (K3k - 2)g + (K3 -K 2k)

a0 = g 3 - K3g2 + K2g + (kWm_ Wm2)(K 2 k2 ) kI

Approximations to equation (7) may be formed.

(1) Treat both g and h as small (appropriate when isolating the phugoid
factor)

Equation (7) may be then approximated by the linear relationship

alIh + a0  0 '

where a I - (K3k - 2)g + (K 3 - K2k)

and a0  - K2g + (kWml - Wm2 )(K2 - k 2) - k I .

9 '
This is the same result as obtained by Babister by use of the Bairstow approxi-

mation to the roots of the quartic.
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(2) Retain terms up to and including the product and the squares of g and h

The equation has the same form as (7) with a0coefficient simplified by

the omission of the term g 3, an often insignificant change.

To each pair of values of g and h that satisfy equation (7) there

corresponds some value of the parameter m u and this is given by either of the

two relationships of equation (5).

As previously remarked a corresponding set of equations exists between

the other two coefficients G and H . In a complete analysis it is useful,

as we shall see later, to plot the curve of H as a function of G as well as

of h as a function of g , because in such a case extreme values of the design

parameter need to be embraced. Where, on the contrary, interest centres around

the effect of modest variations from a given datum value it is more reasonable

to obtain either approximate or exact values of g and h for the basic

aircraft.

To illustrate the interpretation of the plot of h against g this has

been displayed schematically in Fig 1. As previously noted stability is ensured

if g > 0 and h > 0 . This positive quadrant is subdivided by the curve

9= 4h into regions in which the factor corresponds to a convergent oscilla-

tion and two subsidences respectively. The axes and the curve g2 = 4h sub-hi divide the unstable regime into different forms of instability as indicated on
the diagram.

3.1 Value of g when h =0

Of special interest is the value of g when h is zero. The determina-

tion of this value of g requires the solution of a cubic equation a 0 = 0

thac is

g K 3 9g + K2g -k, + (K 3 -k 2 )(kWmi Wm2) = 0

The different roots corresponds to the 'phugoid' factor, which we shall

generally identify with g and h , and to the 'short period' (or fast) factor

(G and H). In the case of 'phugoid' factor we may drop the term in g 3and g

for the numerically smallest root. It is, therefore, of interest to examine

Lnmori closely the constant term in the cubic for g ,which we shall denote by

K. Now
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K (K3 - k2)(kWml - Win2 ) k,

inwi+ xw) -u -mq (x -w ,,zu -zun •

If, for simplicity, we neglect the effects of compressibility and elastic distor-

tion the dynamic normalized quantities involved in the above expression can be

rewritten in the following forms,

=CLe

x = - 2 (CD + CAS)

aT
I avwhere CAS =- , so that C AS 0 for jet propelled aircraft,

Zu = u  = 2CLe

ww acx Lie

a \C and so
a(c )e

+ w x f ac Lw = - e CL

-e  - e

The first term in K is thus approximately,

I{ aCD
2m(w + CAS cL K--L

e

which demonstrates the importance of whether the equilibrium speed is above or

below the minimum drag speed (cf Refs 7, 9, 11) in determining the sign of g

when h f 0

If the basic value of g is positive there are three cases according as,

(i) (g~h-0 > (g)basic > 0

i (g) basic > (g) h0 > 0



(iii) (gbasic > 0 > (g)h=0

as illustrated in Fig 1. Case (iii) arises when K is positive, that is, when

(CD+CAS-CL(3CD/DCL)) has a sufficiently large negative value. When this is so

there is a range of positive static margins for which undamped phugoid oscilla-

tions can occur (cf Appendix A and examples). An examination of the remaining

terms in K indicates that small values of m and m- make for more positive
q w

values of K and the same consequences, which is in agreement with the conclu-

sions drawn by Babister

4 THE g, h RELATIONSHIP FOR VARYING m

Another important and basic parameter in the longitudinal stability

quartic is m . The relationship of g to h (or G to H) as m is

varied can readily be found by introduction of the expressions for K2, K1  and

K0  into equations (4) and rearranging the equations obtained in the form,

mw(g - Wm2 ) = k, + Um2mu - k2g - K 3h + 2gh + g
2 (K3 -g)

(8)

m w(h - Wm) = Um 1mu - k2h + gh(K 3 - g) +h2

Elimination of m yields the desired relationship, that is
w

g - WM k + U 2 m - k2 g - K3h + 2gh + g 2(K 3 - g)2 1 m u 2 3 3(9)
Umim u - k2h + gh(K3 - g) + h2

Equation (9) is the most general form of the relationship. It is instructive

to introduce into the above equation the simplified forms of Uml, Um2, Wmi and

W 2 which pertain to a level flight condition of equilibrium. We then obtain

the equation,

g-x k - + - - K3h + 2gh + g 2(K - g)m(CuL1x)ukCgeKXw)(K 3g(10)
h - ZuCLe h2 + gh(K 3 - g) k 2h ZwmuCL e

This may be rewritten as a quadratic in h

Ln

6 ~h + Bh + 6 0 (I
00'2 1 0
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where B 2 K - x -
2 3 2

= lk 2 x u - k I + mu(CLe + x) - ZuCLeK3  + (2 ZuCLe - xuK3 )g + x g

= LeklZ u + xuz m - +u + zm)g
uL u Zu m( e w) (k2Z w mu)

21+ Zug2(3 - g]

From this equation the values of h may be obtained as g is varied away from

its basic value as shown schematically in Fig 2. The interpretation of the

different regions into which the axes and the curve g2 = 4h divide the plane

follows the pattern of Fig 1.

Various approximations to the relationship of h to g may be obtained.

The simplest of these corresponds to the retention of only linear terms on the

right-hand side of equations (8) or in the numerator and denominator of the

right-hand side of equation (10). To this approximation (approximation I)

a2 ' K 3

a8I  k 2u mu(CLe +xw) k ZuCLeK3

B0 CL[IklZ + x z m - mz (CLe + x - (zm + k 2 zu)g]

Another form of approximation is obtained if in the expanded equation (11)
2 2 3

terms in gh2 , g h and g are neglected. With this adjustment (approximation
II)

a2 K 3 - xu

I Jk2x u - k I + mu(CLe + xw ) - zuCLeK 3 + (2z uCLe - x uK 3)g

0  CLe[{kiz u + xuz mu u - zumu(CLe + x)I- (k2zu + zwmu)g + ZuK3 g2]

With this degree of approximation the curve becomes a conic and in Appendix B

the nature of conic approximations to the h, g curves for both varying m0u %
0and varying m are discussed. ON

4 w VI
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It is implicit in the above approximations (and those of section 4.1) that

g and h are generally small and, in the case of the longitudinal quartic,

associated with the slow or 'phugoid' motion.

4.1 Value of g for which h = 0

The exact relationship between h and g reduces to the following cubic

in g when h is set to zero,

zg ZuK(2 ,Ikl zm+ xz m - zmu~ +=w I  f 0
Zug - + (k 2 Zu + zwmu)g - kIz uwu uu(CLe+xw)

As a first approximation to the solution of this cubic we have,

kIZu + muxuZw - Zu(CLe + xw)j

g = k2Zu + zwmu

k1CL + m I(CD + CAS)(CLt + CD) - LCL(CD/'CL)teklCkC

k2CLe + muCLa

where CL, = (aCL/a)e

The term in mu in the numerator is approximately equal to

Iu

'CD

muCLa(CD + CAS - CL4u BL)e

Thus we see that once more the location of the flight conditions relative to the

minimum drag conditions plays an important part in determining the trends in g

5 NUMERICAL EXAMPLE

To illustrate the use of the preceding analysis we consider a basic air-

craft having the following characteristics and equilibrium conditions,

272

i = 1.75

CLe = 0.25

x = 0.0188o u

Z = 0.25u
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x f -0.139w

z f 4.899

w

m = 113.774w

m. = 1.20
w

m = 6.542q

and with z. ; z and m all zero.w qu

To examine the effect of varying m on the coefficients g and h,
U

equation (7) is solved for the values of g indicated in Fig 3. In this example

the basic aircraft possesses a stable phugoid mode (convergent oscillation).

As m is increased a region of two subsidences (very narrow) is quickly tra-

versed and a region in which the quadratic factor corresponds to two real roots,

one subsidence and one divergence, is entered. Reduction of m is associatedu

with a phugoid or oscillatory motion at first convergent but eventually becoming

divergent.

By use of equation (11) the effect of varying m may be determined.w

The values of h for the values of g indicated in Fig 4 yield, for the

example aircraft, the curve shown in that figure. As the value of m is

increased this curve is traversed in the direction indicated. Most of the curve

remains within the convergent oscillation region and it just enters the one sub-

sidence, one divergence region near g - 0.03

6 VALUES OF THE PARAMETERS m AND m ASSOCIATED WITH POINTS OF THEu w

h, g CURVE

To each point of the h, g curve there corresponds a value of the design

parameter being varied, namely, m or mw , as the case may be.

The values are given by either of the two equations (5) for mu , when

this is the parameter being varied and by either of the two equations (8) for

mw when this is being varied. When either (or both) of the factors

(A2 + gA + h) and (A 2 + GX + H) represents an oscillation no difficulty arises

* in the computation of the parameter values. However, when these two quadratic

factors themselves factorize into two pairs of real roots the matter is not

straightforward. Suppose the factors are (X + R1 ), (A + R2), (X + rI), (A + r2)

then all six combinations of these in pairs must occur somewhere along the g, h O '
* curve or the G, H curve, since the analysis cannot make the distinction. It

is for this reason that the simultaneous plotting of the g, h and the G, H
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curve is desirable. The matter is discussed in more detail in relation to the

numerical examples given in Appendix A.

ANALYSIS IN TERMS OF THE PARAMETERS K , STATIC MARGIN AND Hn m

MANOEUVRE MARGIN

The well-known criteria for stability of the longitudinal motion of an

aircraft (static and manoeuvre margins) are related to m and m as follows,
u w

K n Y + V C I(CL + C)M
n j- CLe(CLa)e L 2 J mw a

and
i

I(CLa) (mw + CLamq)e (of Appendix A).

Thus the coefficients of the quartic may be expressed in terms of K and Hn m
in place of m u and m w . The coefficients affected are K, K 1 and K 0

These may be written in the form,

K2 K 2mHm + K20

K = Km Hm +Kn Kn +K0

and

K = KK
0 On n

where 20 = k2  mq w

K k - x+ -z
1 1 mqlXuZw Zu(CLe Xw)

K 2m = IIZw/iy '

Kim (1/iy)IXuZw - Zu(CLe + xw)'

K In a (2 1J/iy)CLe(CLe + x w)

KOn "y(2v L /iy)C~eZw

when the approximation

o L CL
z -- +C D  a

w aa D
is made.
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By introduction of the relationships appropriate to level flight, viz,

xu = 2 V

z = 2(CL+2 V)

Xw ''a- CLe

(-aCL + CCL

w )C ie

the above can be expressed in terms of CD, CL and their derivatives.

With the coefficients of the quartic expressed in terms of K and Hn m

we can establish the locus of the points g, h and G, H as each parameter is

varied in turn, all other parameters being held constant. From equations (4)

we have,

(K2mg K Im )Hm - KIn Kn = K10 - K20g - K3h + 2gh + g2(K 3 - g)
and (12)h2

K 2mhHm - KnKn  = h+ gh(K 3 - g) - K 20h

Elimination of K gives the locus for varying K and this isn n

2
KIn (KI0 + KimHm (K20 + K2m)Hm - K3h + 2gh + g (K3 - g)-- = (13)
KOn h2 + gh(K3 - g) - h(K20 + K 2 H)

Elimination of Hm  yields the relationship satisfied for varying Hm , that is

K2mg - Kim (K 0 + KInKn ) + K 20g - K3h + 2gh + g2(K 3 - g)

K2m h2 + gh(K 3 - g) - hK20 + K OnKn

By virtue of the linear relationship between H and m , a fixed value of one

implies a fixed value of the other. Consequently, the curves for varying Kn
(equation (13)) is identical to equation (6). However a fixed value of the

static margin, Kn , implies a linear relationship of mu and mw as Hm is
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varied. In this case K 0maintains a constant value proportional to Kn

This is illustrated by the results shown in Figs 18 and 19, although it should

be noted that these results are in terms of the old notation (see List of symbols

and Appendix A).

8 DISCUSSION

The analysis of a number of different cases enables some comments to be

made as regards the stability of the different longitudinal modes of motion and

their dependence on design features. These are in agreement with those of

Refs 6, 7, 8, 9 and 11.

From the equation of the g, h locus for varying Kc and varying w

respectively it is possible to deduce the value of g when h - 0 and to

demonstrate its strong dependence on the relation of the equilibrium speed to

the minimum drag speed. This is illustrated by Figs 5 and 6.

Cases can exist for which increase in the static margin (K nor decrease

in Kc) results in an unstable phugoid oscillation, for example, aircraft 3 of

Fig 5. It is worth noting that the factor (X2 GA~ + H) represents the usual

short-period oscillation of aircraft 1, 2 and 3 and that the values of G and

H only change slightly for the rantge of g covered in Fig 5. Each of the

aircraft 1, Ia and 3 of Figs 5 and 6 is statically stable (E > 0) for points

within the unstable oscillation region (see also section 4 of Appendix A).

Variation of w with all other parameters held constant shows that air-

craft I and 2 (Fig 7) possess unstable phugoids for a certain range of w in

spite of being statically stable (see section 5 of Appendix A).

The cases illustrated in Figs 8 and 9 point to the danger of a positive

static margin in conjunction with a negative or zero manoeuvre margin, which

can give rise to a rapid divergence or a markedly unstable phugoid oscillation.

It should be noted that for the cases illustrated in Figs 8 and 9 when both g

and h are positive, H must be negative for a negative static margin (K n)

(or a negative E). This implies a divergence in pitch. In contrast,with the

values of manoeuvre margin indicated in Fig l0,a divergence is associated with

the negative static margin. As pointed out in Ref 6 this divergence may be

sufficiently slow to be tolerated if the manoeuvre margin is sufficiently large

and positive as suggested by the trend with increasing manoeuvre margin.

U.M With a fixed value Of K -- 0.085 ,variation of w , for the aircraft

which is the subject of Figs 13 and 14, demonstrates stability of all modes for
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w > -2.663 . (This corresponds to K - 0, Hm - 0.01 .) Analysis in termsnm

of manoeuvre margin for the same aircraft, but with the static margin held at

0.05, again demonstrates the link between unstable phugoid oscillation and a

small manoeuvre margin with this level of static stability.

9 CONCLUSIONS

(1) It is possible to relate the coefficients of the two quadratic factors,

into which it is always possible to factorize a quartic stability equation, to

those of the quartic.

(2) The relatively simple nature of the relationships between the coefficients

provides a method of analysing the stability of the longitudinal motion of an

aircraft as a single design parameter is varied.

(3) A stability analysis of this form is intermediate between the one-parameter

diagram and a root-locus plot. It does not, however, involve solution of a

number of quartics. It also possesses a compactness certainly not present in

the one-parameter diagram.

(4) Use of the present method enables certain broad trends to be established,

see section 8.

(5) Here the application of the method has been to the longitudinal stability

quartic. It is equally applicable to analysis of the lateral stability quartic

and extension to higher-order stability equations may be possible.

L
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Appendix A

ANALYSIS OF THE QUARTIC IN TERMS OF THE NOTATION OF R&M 2027

A.I Analysis for the design parameters w and K

Babister9 uses the notation of R&M 2027 and to facilitate comparison with

his analysis and the results of a numser of past papers it is useful to analyse

the quartic using this old notation.

The stability quartic for small perturbation longitudinal motion about

steady level flight in a uniform atmosphere has the same form, but the numerical

value of the coefficients and roots differ from those of the dynamic normalized

equation of the main text. We write it in the form,

A + B 3 + C 2 + DX + E = A-1)

where (see Refs 6, 7, 9 or II)

B = N+v+X,

C w w + Nv + QX + P

D f QW - SK + Pv + RX

E Rw - Tc

Corresponding to equations (4) of the main text, section 2, we have,

Cg - D + Bh = 2gh + g 2(B - g)
(A-2)

Ch - E = gh(B - g) + h2

If the above expressions for C, D and E are inserted in these equations

they can be written as

(g -Q)W + SK P + RX - (P + Nv + Qx)g - Bh + 2gh + g2(B - g)

(A-3)

(h R)w + TK (P + Nv + Qx)h + gh(B - g) + h2

Thus, if we require the relationships of h and g as K is varied all other

parameters being held constant it is necessary to eliminate K . This yields

.0 2
S (Pv + RX + Q) - (w + P + Nv+ Q)g - Bh + 2gh + g(B -g) (A-4)
T Rw - (w + P + Nv + Q)h + gh(B -g) + h2

L ___
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For varying w the relationship is given by

2(Pv + RX - SK) - (P + Nv + Qx)g -Bh + 2&h + 2(B (A-5)
h - R - TK - (P + Nv + Qx)h + gh(B - g) + h2

As remarked in the main text the value of K corresponding to a given point of

the curve defined by equation (A-4) is given by either of the two equations,

SK - (Pv + RX + Qw) - (w + P + Nv + Qx)g - Bh + 2gh + g 2(B - g) (A-6)

or

TK = Rw - (w + P + Nv + Q)h + gh(B - g) + h (A-7)

Likewise for a point on the curve defined by equation (A-5) the value of w is

given by either

2
(g - Q)w = (Pv + RX - SK) - (P + Nv + Qx)g - Bh + 2gh + g2(B -g) (A-8)

or

(h - R)w - TK - (P + Nv + Qx)h + gh(B - g) + h2  (A-9)

It may be noted that as

h R W t Co

also as
G - Q, W C ±o

Since equations (A-8) and (A-9) yield identical values of w (this generally

provides an arithmetical check) the point (QR) is a point of the curve, which

approached from one side corresponds to w - + and from the other side to

W -* -- . Since Q and R are usually positive this point lies in the first

quadrant.

A discussion of the geometry of the curves defined by equations (A-4) and

(A-5) is given in Appendix B.

A.2 Analysis in terms of H and K
m n

Instead of expressing the coefficients C, D and E in terms of W and

K we may express them in terms of the stability margins H and K and then
m n

examine the effect of varying either of these two parameters on the stability

characteristics.
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The static and manoeuvre margins, K nand H m, as usually defined are

nand

adH B B2X 1 (w + iC~v) (A-11)

ii c La L

Here level flight equilibrium conditions have been assumed and the approximation

~(C~a+ CD ~ ~ made. From these relationships we have,

Wi CLaH - ICLav

and

+ L) k LK C + v

so that

C C C H m+ (N -ACLa)V+ QX+ P

D D DH + DK + IP + +( 3L Sv + RX
mm n n (L 2

E E EK
n n

where C m - (\CLa

D cjCL, CL 2'C Sm (T)~l2a(~ L V L

D C
nL

andB

n = B- (A LCLa

If the expressions for C, D and E are introduced into equations (A-2), we

have in place of (A-3) the following,
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(Cg - Dm)H - Dn K = 1p + (CL + -V(aCL/aV))S} + RX - {P + QX + (N - ICLM)Vjg

- Bh + 2gh + g2 (B - g)

and

hCmHm - EnKn  = F + QX + (N - 1CLa)V h + gh(B - g) + h

. ...... (A-12)

which yield for the relationship between h and g for varying K only then

equation,

[DmHm + RX + {p + (CL + IV(DCL/3V))S[v] - fCmHm + P + QX + (N - iCLa)vlg

D - Bh + 2gh + g2 (B-g)n

En h2 + gh(B - g) - C mH m+ P + QX + (N - 1CLa)Vjh

....... (A-13)

whilst if K is held constant along with the other parameters and H variedn m

h and g are related according to the equation,

I DnKn + (P + CL + JV(CL/ V))v + RXI - -P + QX + (N - iCLa)v g

(Cmg - Dm) - Bh + 2gh + g2(B - g)mh m -(B-h 2

CEK + (N -K -)h + gh(B - g) +
mn n -P + Qx + N CL)a

.......(A-14)

From the equations for w and K in terms of H and K it can be deducedm n

that equation (A-13) defines the same curve as equation (A-4). In contrast vary-

ing H (with K held constant) may not be identified with varying w , sincem n

it also implies a varying value of K . This reflects the natural character of

w and K (or K n ) as parameters of the aircraft or, in other words, the fact

that K is based on an exact theory whilst H is the result of an approxi-
n m

mate theory. The point g, h corresponds to some value of Kn  and Hm  and

these latter may be deduced from either of the two equations formed from

equations (A-12) (cf equations (A-6) to (A-9)). The value of Hm- ± as the

point h = 0, g = D /C is approached.
m M
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A.3 Numerical examples

Some of the features of the analysis are best illustrated by numerical

examples. Again to aid in comparison of the results and conclusions with those

of earlier investigations the numerical work is in terms of the old notation and

the basic data drawn from Refs 6, 7 and 11.

The characteristics of the four basic aircraft considered initially are

listed below.

Aircraft 1:

CL  = 0.8 , = 25.00 K = 0

LCL

v = I X 0.4 , = L = 4.0 , C = 0.01

= 0.01 , s = 0.0625 CD  = CDo + sCL = 0.05

Aircraft 2:

CL  = 0.2 , = 25.00, K = - 21.00,

V = 1 , X = 0.4 , CLa = 4.0 , CAS = 0.01

CD0  0.01 , s = 0.0625 , CD = CD0 + sC = 0.0125

D CDO SL =0.5

Aircraft 3:

CL  0.8 , =8.0 ,<=0.4923,

= !, =0.4 , CLa = . AS =00

CD0 001 ,s =0.0625 , CD  CD0 + sC 0.05.

Aircraft 1a:

As for aircraft I but with s increased to 0.08, which gives CD 0.0612.

The loci of the coefficients g, h are traced for these aircraft when

(a) K is assumed to vary, and (b) when w is assumed to vary, all other para-

meters being held constant in each case.



24 Appendix A

Spitfire V (aircraft of R&M 2027):

This aircraft was used in the numerical examples of Ref 4 and so we can

quote the coefficients of the stability quartic as functions of w and K

given therein,

B = 6.010

C = 5.738 + w

D = 0.1189 + 0.03039w - 0.01763K

E = 0.002357w - 0.07365K

Static and manoeuxre margins:

K = 0.003597w - 0.1124K
n
H = 0.01914 + 0.003432wm

The coefficient of w in K has been adjusted slightly as compared with then

value given in R&M 2027 in order to render K n E (as it should be).n

The variation of K with fixed values of w and variation of w with

fixed values of K are considered. An analysis in terms of K and H isn m
also considered.

7.
Aircraft of R&M 2078

In Ref 7, Neumark analysed the stability of an aircraft at two lift

coefficients in terms of its dependence on the parameter w by means of a one-

parameter stability diagram. The same data .re used as a further example of

the use of (g,h) and (G,H) plots.

In this case,

CL  = 1.0 , CDO = 0.02 , CAS = 0.01 , s = 0.06

CL
L 4.5, v = 3, X = I, K = 0.

A.4 Effect of varying K on the stability of aircraft 1, 2 and 3

The characteristics of the three aircraft designated aircraft 1, 2 and 3

in Fig 5 were chosen such that the locus of g, h for varying K corresponds

to a different one of the three cases illustrated diagramatically in Fig I.

Datum values of h, g were obtained by solution of the stability quartic

(square symbols) and also by use of the relationship of equation (A-4) (circle

symbols). For all three cases the locus of g, h is close to the straight line
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approximation obtained by treating both g and h as small (see section 3).

In the case of aircraft 3 some departure from near linearity is evident as K

is decreased and the region of unstable oscillation is entered.

In the case of aircraft I increase of K takes the aircraft out of the

stable region and just into the region of unstable oscillation before entering

the region where the factor (X 2 + gX + h) corresponds to one subsidence and one

divergence. If the value of CD /DCL  is increased (aircraft Ia) this trend is

more pronounced as shown in Fig 6. At g = 0 ,

h2 - Ch + Rw
T

and by the second of equations (A-2)

2E = Rw - TK = Ch- h

Thus E > 0 and each of the aircraft I, Ia and 3 is statically stable even when

K is such that it enters the unstable region.

The linear approximation to the locus of g, h for varying K is

obtained by ignoring all terms on the right-hand side of equations (A-2), that

is, equation (A-4) reduces to,

S (Pv + RX + Qw) - (w + P + Nv + QX)g
T Pw - (w + P + Nv + Qx)h

(Pv + RX + Qw) - Cg (A-16)
Rw - Ch

A.5 Locus of g, h for varying w , all other parameters constant for
aircraft 1, 2 and 3

We now examine the effect on the values of g and h of varying the

parameter w for aircraft I, 2 and 3. For the variation of w in the neigh-

bourhood of the basic aircraft the resulting curves correspond to three of the

various possibilities illustrated in Fig 2. At g = 0

Bh - (Pv + RX - SK) h - (P + Nv + Qx)h - TK (A-17)
= Q (h -R)

__ M -1
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and

E = Ch - h2 = (w + P + Nv + Qx)h -h
2

h[Rjh - (P + Nv + Qx)j - TK]

h - R (A-18)

The curves for aircraft I and aircraft 2 (see Fig 7) intercept the positive h

axis at h = 0.15265 and 0.25064, and at 0.38798. When the values of w and

E are determined for these points it is found that for 7.73 > w > 2.04 air-

craft I enters the unstable oscillation region even though E (or static margin)

is positive. Aircraft 2 enters the same region at w < 9.65 . Aircraft 3 does

not exhibit instability for the range of values covered by Fig 7, which corres-

ponds to values of w from 2.23 up to +- . For some negative value of w it
2

is possible that the locus of g, h intercepts the boundary g = 4h

cf Fig I or 8.

The exact relationship of h and g for varying w (equation (A-5)) can

be written as a quadratic in h (this is the form convenient for computation).

If we write the quadratic as,

B2h2 + B h + B = 0 (A-19)

then

B = B- Q -g
2

B, = JQ(P + Nv + QX) - (Pv + RX- SK) + BRI - (BQ - 2R)g + Qg2

B0  = IR(Pv + RX - SK) + TQKJ - JR(P + Nv + Qx) + TKjg + Rg 2 (B - g)

As with the corresponding equation of the main text (equation 11) it is possible

to approximate to this.

Approximation 1:

Linearize the expressions on the right-hand side of equations (A-3) and

the following results,

g - Q (P + RX  SK) - Bh - (P + Nv + QX)g (A-20) o
h - R - TK - (P + Nv + Qx)h

L. ............... I,
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which yields the following expressions for B2, BI and B0 ,

B = B,

B = Q(P + Nv + QX) - (Pv + RX - SK) + BR

B0  ={R(P + RX - S:) 4 - R(P + Nv + Qx) + Tg

Approximation 2:

Another type of approximation is obtained if we consider both g and h
2 3

in equation (A-19) to be small. In the simpler of these terms in gh, g , g ,

g 2h and gh2  are all neglected, then the expressions for B2, BI and B0

become,

B = B - Q

2

B = Q(P + Nv + QX) - (Pv + RX - SK) + BR

B0  = R(Pv + RX - SK) + T f - {R(P + Nv + QX) + TK}g

It may be noted that the coefficient B2 differs from that of approximation I

and that approximation 2 is somewhat more accurate. A further approximation

can be obtained by neglect of the third order terms only.

Approximation 3:

Yet another type of approximation is obtained by considering g only as
and tersin 2  an 3 r

small. If in the expressions for B2, B and B terms in g and g are

neglected, we obtain,

B = B- Q -g
2

B, = Q(P + Nv + QX) - (Pv + RX - SK) + BRI - (BQ - 2R)g

PO 'Pv + Rx - SK) + TKI - JR(P + Nv + QX) + TKfg

In this fcrn B2  is exact and B is an improved approximation. If only terms
321

Ln in g are neglected then B l takes on its exact form and B0  only differs
10 3
from its exact value by -Rg

km'
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In Fig 7, approximation I is used to obtain values of h and g for com-

parison with the exact.

A.6 Effect of varying K on the stability of the Spitfire V

In Ref 4 the coefficients of the longitudinal stability quartic for the

Spitfire V are quoted as functions of w and K . We now consider the locus of

g, h for varying K at four levels of w, C or H . Thus in Fig 8,m

= -7.035, Hm = -0.005. With this negative manoeuvre margin the aircraft is

statically stable when K < -0.224 (K > O, see Fig 8). However it falls within

the unstable oscillation region for values of K < -0.66 (or K > 0.05n
approximately). Between K = 0 and K n 0.05 the motion consists of twon n
divergences. In fact the phugoid motion is only stable when the static margin

is more negative than about -0.007.

Approximate values of the static margin K are marked alongside then
curve. As remarked elsewhere variation of K for fixed w is equivalent to

the variation of K for fixed Hn m

The next figure (Fig 9) shows similar trends for the case of the aircraft

with zero manoeuvre margin. With manoeuvre margins of 0.01 and 0.05 the locus

over the range of K of -0.2 to +0.2 does not depart much from the linearn

approximation, see Fig 10. However for H = 0.01 and K n -0.2 the approxi-m n
mate values of g and h are appreciably in error.

Thus far we have been concerned, in the main, with the locus of g, h in

the neighbourhood of some chosen datum. To each point of the curve there

corresponds a value of K (and hence K ) as given by equations (A-6) and (A-7)
n

and the values of K nalong the curves of Figs 8, 9 and 10 are determined

approximately by interpolation of the K values. When the point g, h (or the

corresponding point G, H) represents an oscillation no difficulty arises in

the calculation of K . However when all roots are real ambiguity can arise as

discussed in section 6. To illustrate the point we consider that part of the
2locus in Fig 8 which lies below the curve g = 4h . This is reproduced in

Fig 11. Since the points between A and B on the locus of g, h and the

points between the corresponding points A' and B' of the G, H locus

represent real roots of the quartic, there are six combinations of these roots.

These appear as sets of three points on each curve as indicated in Fig 11.

Apart from the fact that the values of K must be in sequence as the chosen

point moves from A to B , there seems to be no other way of discriminating

between the alternatives unless a one-parameter stability diagram is prepared

(cf Figs 13 to 15).
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It is of interest to examine the trends for large positive and large

negative values of the parameter K .For numerically large values of g we

may approximate to equation (A-4) as follows,

S= k g 3---- (A-21)
h2 _g2h

that is

kh - kgh +g = 0 (A-22)

The solution of equation (A-22) is

k 2 o (A-23)

These limiting forms of the curves are sketched in Fig 12.

To relate the value of g to the trend in K we note that for large g,

gh - (SK +g3 (A-24)

When equations (A-23) and (A-24) are combined we have,

3
g 4±SK .(A-25)

The two solutions in equations (A-23) and (A-25) refer to the g, h locus and

the G, H locus respectively, if these are identified with the 'phugoid' factor

and the 'short period' factor. This is arbitrary and to emphasise this the

curves of Fig 12 are marked with a dual interpretation.

A.7 Locus of g, h as w is varied (Spitfire V)

If, in the data for the Spitfire V as listed earlier, we fix K at -0.085

the coefficients of the stability quartic become functions of w as do the two

margins K and H m. To trace the locus of g, h as w is varied equation
(A-5), or its equivalent equation (A-19), is used to evaluate h for a range of
values of g . The locus is a closed curve approximately elliptical in shape,

£ see Appendix B. Along the arc ABC of this curve the values of w as given by

LM equations (A-8) or (A-9) are not necessarily unique, as it turns out that all

0 four roots of the quartic are real in this range. Accordingly there are three

values of g and h corresponding to a given w in the range affected as

illustrated by the points for w = -3 and -4 in Fig 13a&b.
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A portion of the locus is shown enlarged in Fig 13b, so as to enable

approximate values of w to be marked along the curve. The point w = ± is

given by g Q = 0.03039 and h = R = 0.002357 . Also plotted in Fig 13a is

the locus of g, h when the value of K is changed to -0.127. It also passes

through the same point for w = ±- , as would the whole family of curves for

different K For points between C and A the factor X2 + Xg + h

represents a stable oscillation, see Fig 13.

In the next figure (Fig 14) the locus of G, H (the 'short period'

factor coefficients) is plotted. On it are indicated the points corresponding

to A and C of the curve in Fig 13 and the boundary G2 = 4H (of Fig I).

The points for w = -3 and -4 would number three in all, corresponding to

different combinations in pairs of the four real roots, of which only one each

is shown.

The minimum value of G corresponds to B - gmax , where gmax is the

maximum value of g . At the value of G given by (B - Q), w - ±- and the

locus becomes asymptotic to the line G = B - Q . On the basis of the results

obtained a one-parameter stability diagram may be prepared. This entails

solution of two quadratics and as explained previously no difficulty arises

when either quadratic represents an oscillation. However between w = -4.914

and -2.60 the quartic has four real roots and it is necessary to proceed in the

following manner to relate these to a certain value of w . For a point of the

g, h locus (along ABC) determine the value of w and the corresponding value

of G = B-g . With this value of G we solve for H and accept the value of

H which yields the same value of w as given by the point g, h . Thus the

curves of Figs 13 and 14 contain the information of the many curves of Fig 15.

As w ±0 the quartic factorizes approximately as IX2 + (B - Q)X + wl x
IX2 + QX + R1, a result which follows easily by inspection or from the equations

(A-5), (A-8) and (A-9).

A.8 Locus of g, h for varying w , all other parameters constant, for the
aircraft of R&M 2078

In Ref 11 Neumark tabulates the roots of the longitudinal stability

quartic for an aircraft of specified characteristics over a wide range of w

-2 to +-. The results are also displayed in the form of a one-parameter

stability diagram. It is, therefore, interesting to examine the locus of g, h

and G, H for this aircraft as given by the present method. 0



Appendix A 31

In Fig 16 the coefficients g, h as derived from Neumark's results and

further values as obtained by application of equation (A-19) are plotted.

Neumark's results identify the point A as corresponding to w = 0.2369 in

agreement with a value of w - 0.2367 from equation (A-9). Since he calculated

the roots for the two negative values of w = -1.0 and -2.0 on the arc ABA' it

seems that he might have attempted to locate A' , the other point of inter-
2

section with the curve g = 4h , but failed to hit on the approptiate value of

w . Points on the locus above A' correspond to the third type o oscillation

arising from a recombination of two real roots, cf Fig 15. The locus is to a

close approximation an ellipse as indicated in Fig 16.

To obtain the corresponding G, H locus equation (A-19) is used to

calculate H for a range of values of G in the neighbourhood of G = B-Q

the asymptotic value of G as w - ±- . When the coordinates so obtained and

those derived from Neumark's results are plotted the curve of Fig 17 is obtained.

A.9 Analysis of the stability of the Spitfire V aircraft in terms of its

static and manoeuvre margin values

Since the static margin is linearly related to the parameters w and K

and the manoeuvre margin to the parameter w , we may write the coefficients of

the quartic in terms of the margins K and H , as follows,
n m

B = 6.010,

C = 291.37529H + 0.16108

D = 8.69050H + 0.15685K - 0.04744m n
E = 0.65525K

n

These enable the stability of the aircraft to be examined using equations (A-13)

and (A-14) when K is varied, for fixed H and H is varied, for fixedn m m

Kn , respectively.

A.9.1 Locus of g, h for varying Kn , fixed Hm

As already remarked the variation of Kn with a fixed value of H
the manoeuvre margin, is equivalent to variation of K with w held fixed.

Accordingly the curves of Figs 8 to 10 are marked with the values of Kn and

the fixed value of H indicated on each diagram and are capable of the dualm

interpretation.

0

L.
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A.9.2 Locus of g, h for varying H , fixed Kn

To fix the value of K , the static margin, is to establish a linearn

relationship between w and K Hence as H (or w) is varied the value ofm

K changes to retain the constant K , static margin. With K nf= 0.05 then n
locus of g, h for varying Hm as given by equation (A-14) is the curve shown

in Fig 18. It follows from equation (A-14) that as h - ±0, g - 0.0298 and

using the associated equations for Hm  it can be seen that H - ±

By use of the same equation it is possible to construct the locus of

G, H , the coefficients of the other quadratic factor of the stability quartic.

This is illustrated in Fig 19 where it can be seen that G = B-0.0298 is an

asymptote. This corresponds to the point 0.0298, 0 of Fig 18. The result can

be readily derived by approximate factorization of the quartic as H -

The quartic becomes approximately

X 4 + BX3 + C H X 2 + D H X + E K f 0mm mm nn

which factorizes into

That is,
D

m

X 2 B-- H CH H 2 +±C ' mm
m

and
D

m

g -- m h ±0
m

The curves of Figs 18 and 19 cover the range of practical interest, but the fact

that curves are not bounded in the same way as the curves for varying w is of

interest and merits further consideration.

Equation (A-14) can be written as

C2h 2 + Clh + C 0

2 1 C 0=
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D
where C2  B g C m

m

D D D
Cg -E9 B -E g + -. fIP + (N - ICL,,)v + QX1

m m m

- DK( V-L) S - R X

CO  =E g -
0m

For large values of g the coefficients C2, C1  and C0  are given approxi-

mately by,

C ; - g
2 -

C1  cg(g -B)

C 0 Eg,

where c = D /C This gives a quadratic to which the solution is,
m m

E
h c(g - B) or c (g - BT

Thus in the limit h behaves as either cg or -(E/cg) (E > 0, c > 0) . If

we identify g, h with a point on the branch of the curve of Fig 18 that refers

to the 'phugoid' factor, then we are interested in the behaviour of h as
g -w It follows from the result just given that h - - or +0 , and that

H -- in both cases. When g - --, G - +- since G + g = B . By virtue of

the solution to the quadratic, which applies equally to G and H , we have

H - +-, -0 , whilst again Hm -* -- The curves of Figs 18 and 19 show that

for H m - the quartic has four real roots and so coefficients g, h and

G, H appear three times on each curve for H - - , corresponding to the sixm

different combinations of the roots in pairs. It is possible to derive the same

result by direct approximate factorization of the quartic. For large H them

quartic is approximately

14X + BX3 + C H X2 + D H X + E -0

mm mm
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which factorizes into

{2 + B - A - k 2A + A _ 0

wher C k po2ie

where C mH f -k2  k large and positive. Thus the four real roots of the

quartic as H m  are

(a) A k + I - B

D

(c) X k m
EC

m

Dk
m

If we assume k positive,

D
(a) and (b) yield the point G B - -- ; H - -

m

kD
(b) and (c) yield the point G - k - + ; H *c T +

m

EC
m

(b) and (d) yield the point G k - + ; H - m - 0
m

Dk
(a) and (c) yield the point g - k - - ; h - C -

Cm

EC
(a) and (d) yield the point g - - k + - ; h m -- + 0

D k
m

D
(c) and (d) yield the point g d - h 0

in 2

This explains the trends exhibited by the curves of Fig 20.



Appendix A 35

The difference between the closed, compact nature of the curves of

Figs 13 and 16 as compared with that of Fig 20 underlines the essentially

approximate nature of the manoeuvre margin as a system parameter. In contrast,

the concise quantity w is a natural system parameter.
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Appendix B

SOME REMARKS ON THE GEOMETRY OF THE LOCUS OF g, h

A look at the approximations to the various loci to a second order in g

and h (the resulting curves are then conics) helps to establish the nature of

the curves generally.

B.I Locus of g, h for varying K .(second-order approximation)

From equation (A-4) we have, to second-order in g and h

T h2 + (B - 2)gh - Bg2 + (w + P + Nv + Qx)g

+ {B - (w + P + Nv + QX) h + R . - Q w + Pv + RX = 0

The nature of this conic is determined by

-B-- -B - 2) 4 < 0
T 4\ (T , /

Hence the curve is a hyperbola to this degree of approximation.

B.2 Locus of g_, h for varying w (linear approximation of equation (A-20))

The equation to the curve according to approximation I (see equation

(A-20)) is

2
Bh + Q(P + Nv + QX) - (Pv + RX - SK) + BR~h

+ JR(Pv + RX - SK) + TKI - IR(P + Nv + QX) + TKIg = 0

2
Since there is no term in gh or g this is a parabola. Furthermore since

the equation to the curve can be written in the form,

B(h - ho)2  JR(P + Nv + QX) + TKI(g- go)

the axis of the parabola is parallel to the h 0 axis.

0

" -...... - , -- , . . . . . . .. . " .. ... , , 1 I ! . . . . -
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B.3 Locus of g, h for varying w (quadratic approximation of equation
(A-20))

The equation to the curve in this case is

2
B2h + BIh + B0  = 0

where B2  = B - Q,

B I = Q(P + Nv + QX) - (Pv + RX - SK) + BR - (BQ - 2R)g

B0 =IR(Pv + Rx - SK) + TKI - IR(P + Nv + QX) + Tjg + BR 2

This is the next higher order approximation mentioned in Appendix A, section A.5

(approximation 2).

2 2
Here the coefficients of h , gh and g are as follows,

h2 B-Q

gh 2R- BQ

2
g 2 BR

and the test function for the conic is

!2 B2  2 R R2

BR(B -Q) - (2R - BQ) B R 2-

But,

fi 2CL ac- /
R = D +

(CL 2 Le

If the change with speed of R and Q is negligible or absent then R C e

Q = CDe and the test function for the conic becomes,

L DB(C -C)e LeCt

which is usually > 0 , so that the curve is an ellipse.

L=

w . -
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LIST OF SYMBOLS

'ain text

Zmean chord of wing

CD drag coefficient = D/ PV2S

CL lift coefficient = L/pV 2S

D drag

g coefficient of A in quadratic factor

G coefficient of A in quadratic factor

h constant term in quadratic factor

H constant term in quadratic factor

Hm  manoeuvre margin

iy inertia parameter = Iy/m c
e

ly moment of inertia about y-axis

K0,KK29,K39,K4  coefficients of the stability quartic

Kn  static margin

L lift

me aircraft mass in equilibrium flight

m
q

' mu concise moment quantities, see R&M 3562 or ESDU data items

m
w

M.
w

Q kinetic pressure = IpV
2

R Routh's discriminant

Q with suffix polynomial involved in coefficients of stability quartic

u component of aircraft velocity along x-axis

U with suffix polynomial involved in coefficients of stability quartic

V resultant velocity of aircraft

w component of aircraft velocity along z-axis

W with suffix polynomial involved in coefficients of stability quartic

0
ON.
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LIST OF SYMBOLS (continued)

x
U

x
W
w

x°

z concise force quantities, see R&M 3652 or ESDU data itemsq

z
u

z
W

z.
W

angle of attack

x root of the stability quartic

III relative density parameter = me /P e S

P air density

Appendices A and B (cf R&M 2027 and R&M 2078)

B,C,D,E coefficients of stability quartic

CAS propeller contribution to xu derivative = [(-1/pSV)(0T/V)] e
propeller 'drag' coefficient

CLa rate of change of CL  with a = DC L/

i B  inertia parameter = IB/m e2

IB moment of inertia about y-axis

tail arm (distance from cg to mean i-chord point of the
tailplane)

N (r!L + iCD +. CAS)e

[C D + CAS)(CLa + CD) + C+ VeC a/

QD +C AS) - CL tan yl

R CLCL + V (CD + CAS) tan

e

SI 
[L CLa + CD~ + (CL act ta

Le



40

LIST OF SYMBOLS (concluded)

Note: In these expressions the contribution of the Z force due to rate of

pitch has been neglected, Cf Table 2 of R&M 2078. In the form given they apply

to a propeller driven aircraft at speeds for which compressibility and aero-

elastic effects are negligible. In the general case, where compressibility and

aeroelastic effects are also included, the CAS term needs to be replaced by

CAS + JV(aCD/aV) , CAS is zero for a jet-propelled aircraft.

Y angle of climb
Wrelative density parameter = me /P e59

K

V i concise quantities in the old notation (for relation to concise
V quantities in the new notation, see R&M 3562, Part 5. For definition

in terms of old-notation derivatives, see Refs 4, 5 or 6)

w~

i0

U'

- .I- - - -i~I



41

REFERENCES

No. Author Title, etc

I E.J. Routh A treatise on the stability of a given state of motion.

Macmillan (1877)

2 E.J. Routh Advanced rigid dynamics.

Macmillan

3 A. Hurwitz Uber die Bedingungen, unter welchen eine Gleichung nur

Wurzeln mit negativen reelen Teilen besitzt.

Math. Ann., 46, 273 (1895)

4 R.A. Frazer On the criteria for the stability of small motions.

W.J. Dun ' Proc. Roy. Soc. A, 124, 642 (1929)

5 W.J. Duncan The principles of the control and stability of aircraft.

Cambridge University (1952)

6 S.B. Gates A continuation of longitudinal stability and control

H.M. Lyon analysis. Part I - General theory.

R&M 2027 (1944)

7 S. Neumark The disturbed longitudinal motion of an uncontrolled

aircraft and of an aircraft with automatic control.

R&M 2078 (1943)

8 G. Sachs Static stability and aperiodic divergence.

Journal of Aircraft, 12, 497 (1975)

9 A.W. Babister Static and dynamic stability.

RAeS Aero. Journal, 82, 806 (1978)

10 H.R. Hopkin A scheme of notation and nomenclature for aircraft

dynamics and associated aerodynamics.

R&M 3562, Parts 1-5 (1970)

11 S. Neumark Problems of longitudinal stability below minimum drag

speed and theory of stability under constraint.

R&M 2983 (1957)

Ln



Fig 1

divergent convergent
oscillation h oscillation

two two
two subsidencesdivergences

d

'g +

one subsidence one subsidence
one divergence one divergence

increasing mu direction
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g, h for varying mu
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Fig 2
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Fig98 The g, h locus for varying Kn or Kc (w. fixed to give Hm 00)
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g, h locus of Fig 13 (Spitfire V)
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CORRIGENDA

Page 4, section 2, line 1: R&M 3562 is Ref 10.

Pages 9 and 10, section 3.1: The equations in this section should contain

the factor (K2 -k 2) not (K3 -k2) as printed.

Page 13, section 5: The table of aircraft characteristics given at the

foot of page 13 and top of page 14 is incorrect. It should read as follows:

= 272.155

i = 1.75
y

CLe = 0.25
x = 0.0376

u

z = 0.50

x - 0.139

z 4.899
w

m =113.839
w

m. 1.200
w

m = 6.543
q

- CLe

PTO
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Page 14, penultimate paragraph of section 5 is incomplete. It should be

amended to read:

"..becoming divergent, when condition (i) of page 10 is fulfilled. If

condition (iii) applies increase of m uachieves the same result."

Page 14, last sentence of section 5: The value of g quoted should be

0.06.

A more complete version of Fig 4 is attached. This corrects the value of

4 mw from 50 to 15 and inserts additional values along the curve.
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